Operations of Shared Autonomous Vehicle Fleet for Austin, Texas, Market

The emergence of automated vehicles holds great promise for the future of transportation. Although commercial sales of fully self-driving vehicles will not commence for several more years, once these sales are possible a new transportation mode for personal travel promises to arrive. This new mode is the shared autonomous (or fully automated) vehicle (SAV), combining features of short-term, on-demand rentals with self-driving capabilities: in essence, a driverless taxi. This investigation examined the potential implications of the SAV at a low level of market penetration (1.3% of regional trips) by simulating a fleet of SAVs serving travelers in the 12-mi by 24-mi regional core of Austin, Texas. The simulation used a sample of trips from the region’s planning model to generate demand across traffic analysis zones and a 32,272-link network. Trips called on the vehicles in 5-min departure time windows, with link-level travel times varying by hour of day based on MATSIM’s dynamic traffic assignment simulation software. Results showed that each SAV could replace about nine conventional vehicles within the 24-mi by 12-mi area while still maintaining a reasonable level of service (as proxied by user wait times, which averaged just 1 min). Additionally, approximately 8% more vehicle miles traveled (VMT) may be generated because of SAV’s ability to journey unoccupied to the next traveler or relocate to a more favorable position in anticipation of its next period demand.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01551185
  • Record Type: Publication
  • ISBN: 9780309369107
  • Report/Paper Numbers: 15-1958
  • Files: TRIS, TRB, ATRI
  • Created Date: Jan 27 2015 11:21AM