Controller Synthesis for String Stability of Vehicle Platoons

Cooperative adaptive cruise control (CACC) allows for short-distance automatic vehicle following using intervehicle wireless communication in addition to onboard sensors, thereby potentially improving road throughput. In order to fulfill performance, safety, and comfort requirements, a CACC-equipped vehicle platoon should be string stable, attenuating the effect of disturbances along the vehicle string. Therefore, a controller design method is developed that allows for explicit inclusion of the string stability requirement in the controller synthesis specifications. To this end, the notion of string stability is introduced first, and conditions for L2 string stability of linear systems are presented that motivate the development of an H∞ controller synthesis approach for string stability. The potential of this approach is illustrated by its application to the design of controllers for CACC for one- and two-vehicle look-ahead communication topologies. As a result, L2 string-stable platooning strategies are obtained in both cases, also revealing that the two-vehicle look-ahead topology is particularly effective at a larger communication delay. Finally, the results are experimentally validated using a platoon of three passenger vehicles, illustrating the practical feasibility of this approach.

Language

  • English

Media Info

Subject/Index Terms

Filing Info

  • Accession Number: 01527822
  • Record Type: Publication
  • Files: TLIB, TRIS
  • Created Date: Jun 5 2014 9:08AM