Evaluation of the Effectiveness of Salt Neutralizers for Washing Snow and Ice Equipment

In winter maintenance, the chloride-based deicers used to keep roadways clear of snow and ice are highly corrosive to vehicles and equipment. Corrosion of snow and ice equipment is a major issue causing increased maintenance and repair costs, reduced vehicle life, and increased vehicle downtime. Statistics show that road salt causes approximately $1500/ton of damage to vehicles, bridges, and the environment. Washing of winter maintenance equipment after exposure to ice control chemicals has been suggested as one possible solution to minimize corrosion. However, washing with soap and water has been shown to be insufficient in removing residual salt from winter maintenance vehicles. Treating winter maintenance equipment with salt neutralizers, used in a variety of household and industrial applications, has been shown to prevent corrosion. Although the consensus points to the need for a reliable and easy to implement corrosion prevention strategy, at present there is not sufficient information available to determine the effectiveness of different wash systems at preventing corrosion. As the corrosion reduction data of salt neutralizer solutions on bare and coated metal surfaces is lacking, a systematic study has been carried out to provide quantitative information. A parallel study of six commercially available salt neutralizers is carried out for comparison. Analysis of the salt neutralizer solutions was carried out using contact angle, Ultra Violet-visible spectroscopy (UV-vis), and Scanning Electron Microscopy imaging (SEM). Corrosion inhibition for several metals treated with salt neutralizer was determined using potentiodynamic measurements and accelerated weight loss analysis (ASTM B117). When considering the effects of corrosion on winter maintenance equipment, it is important to study not only steel but also various “soft metals” (copper, aluminum, brass, etc.) that can be found in the wiring and other parts of the fleet. Electrical Impedance Spectroscopy and visual inspection were used to determine the ability of coated metal samples to prevent corrosion. A cost benefit analysis was completed to determine what specific conditions directly impact the cost effectiveness of corrosion prevention strategies.

Language

  • English

Media Info

  • Media Type: Digital/other
  • Edition: Final Report
  • Features: Appendices; Figures; Photos; References; Tables;
  • Pagination: 153p

Subject/Index Terms

Filing Info

  • Accession Number: 01519401
  • Record Type: Publication
  • Report/Paper Numbers: FHWA/OH-2013/18
  • Contract Numbers: SJN 134718
  • Files: TRIS, ATRI, USDOT, STATEDOT
  • Created Date: Mar 24 2014 4:19PM