Evaluating alternate discrete outcome frameworks for modeling crash injury severity
This paper focuses on the relevance of alternate discrete outcome frameworks for modeling driver injury severity. The study empirically compares the ordered response and unordered response models in the context of driver injury severity in traffic crashes. The alternative modeling approaches considered for the comparison exercise include: for the ordered response framework-ordered logit (OL), generalized ordered logit (GOL), mixed generalized ordered logit (MGOL) and for the unordered response framework-multinomial logit (MNL), nested logit (NL), ordered generalized extreme value logit (OGEV) and mixed multinomial logit (MMNL) model. A host of comparison metrics are computed to evaluate the performance of these alternative models. The study provides a comprehensive comparison exercise of the performance of ordered and unordered response models for examining the impact of exogenous factors on driver injury severity. The research also explores the effect of potential underreporting on alternative frameworks by artificially creating an underreported data sample from the driver injury severity sample. The empirical analysis is based on the 2010 General Estimates System (GES) data base—a nationally representative sample of road crashes collected and compiled from about 60 jurisdictions across the United States. The performance of the alternative frameworks are examined in the context of model estimation and validation (at the aggregate and disaggregate level). Further, the performance of the model frameworks in the presence of underreporting is explored, with and without corrections to the estimates. The results from these extensive analyses point toward the emergence of the GOL framework (MGOL) as a strong competitor to the MMNL model in modeling driver injury severity.
- Record URL:
- Record URL:
-
Availability:
- Find a library where document is available. Order URL: http://worldcat.org/issn/00014575
-
Supplemental Notes:
- Abstract reprinted with permission from Elsevier.
-
Authors:
- Yasmin, Shamsunnahar
- Eluru, Naveen
- Publication Date: 2013-10
Language
- English
Media Info
- Media Type: Print
- Features: References; Tables;
- Pagination: pp 506-521
-
Serial:
- Accident Analysis & Prevention
- Volume: 59
- Issue Number: 0
- Publisher: Elsevier
- ISSN: 0001-4575
- Serial URL: http://www.sciencedirect.com/science/journal/00014575
Subject/Index Terms
- TRT Terms: Crash injuries; Crash injury research; Injury severity; Logits; Traffic crashes
- Subject Areas: Highways; Planning and Forecasting; Safety and Human Factors; I83: Accidents and the Human Factor;
Filing Info
- Accession Number: 01501624
- Record Type: Publication
- Files: TRIS
- Created Date: Dec 23 2013 7:52AM